pcodimax HD / HD+
high speed CMOS cameras

highest color fidelity
excellent ISO speed

high speed
2128 fps @ Full HD

high resolution
1920 x 1080 pixel HD
1920 x 1440 pixel HD+

1288
EMVA Standard Consultant
features

free of session referencing
With innovative use of on chip information, the pco.dimax offers an operation free from session referencing, which does not require any additional mechanical shutter for dark referencing. The pco.dimax incorporates an internal fully automatic referencing feature that does not require additional operator intervention. Therefore it is possible to change frame rates “on the fly” (during recording).

color image quality
The pco.dimax incorporates sophisticated techniques to achieve its high color image quality, proven and recommended by broadcast experts and camera men. This quality applies for high speed frame rates to shoot slow motion clips as well as for standard broadcast frame rates (such as 50 to 60 fps for HDTV 1080p).
A combination of special optical filters and an optimized color-calibration achieves an excellent sRGB image quality. According to ISO Standard 17321 the pco.dimax reaches quality grades of 83 SMI (matching high end digital cameras with typical 75 to 90 SMI). This can be seen by the typical test image sample in the figure, which shows a demanding scene for a correct Bayer pattern color conversion.

A typical test image with color checker, MTF test charts and challenging structures obtained with a color pco.dimax.

low light performance
The customized CMOS image sensor in combination with proprietary algorithms achieves a very low dark signal non-uniformity (DSNU), which can be seen in the figure in a comparison of the dark image of a standard high speed CMOS image sensor and a dark image of the pco.dimax. Hence high quality images can also be recorded at low light sceneries. The low light performance is even further improved by the CDI mode, which is explained in the next section.

The top image shows the typical fixed pattern structures in the dark image of high speed CMOS image sensors, while the lower image shows the lower and more homogeneous noise in the dark image of a pco.dimax.

CDI
If structural information in the dark side of the histogram of the images is of major importance, the pco.dimax with its correlated double image (CDI) mode offers to record images with increased dynamic range and a 30% better performance on the weak signal side of the images (at the expense of half of the usual frame rate).

A bald eagle catches its prey - original resolution 1920 x 1080 @ 500 frames/s (color version)
light sensitivity & ISO speed

Compared to analog photographic films, which are limited to one light sensitivity value, the pco.dimax offers a range of sensitivities (displayed as a band in the figure) called ISO speeds, specified by the ISO Standard 12232. It defines the parameters S_{sat} and $S_{noise40}$ and $S_{noise10}$ for digital camera characterization. S_{sat} gives the maximum amount of light the sensor can process. $S_{noise40}$ defines “excellent” and $S_{noise10}$ “acceptable image quality”. Both $S_{noise40}$ and $S_{noise10}$ are based on noise and quality image comparisons. Qualitatively speaking, the broader the band from S_{sat} to $S_{noise10}$ (see figure), the better the camera performance becomes. The pco.dimax provides image recording from ISO Speed 160, for highest quality, up to 16,000 and more at high frame rates.

linearity

For quantitative image measurements and analysis the linearity of the camera is a prerequisite. The EMVA 1288 linearity measurement results, as shown in the graph next to this text, demonstrate the scientific grade linearity that is a feature of the pco.dimax.

synchronization & trigger

A precise camera to camera synchronization for pco.dimax cameras is integrated by a master-slave mode with a remarkable low jitter (< 50 ns). Further a variety of trigger signals can be used for sequence as well as for single image triggering, allowing for low level, high level, differential and passive signals at the optically isolated inputs. Time code can be added by an IRIG-B signal (modulated or unmodulated). These features are extremely useful for stereo camera applications for 3D motion analysis and 3D particle image velocimetry (3D PIV) measurements.
technical data

image sensor HD/HD+

- type of sensor: CMOS
- image sensor: proprietary
- resolution (h x v): 1920 x 1080 pixel HD
 1920 x 1440 pixel HD+
- pixel size (h x v): 11 µm x 11 µm
- sensor format / diagonal: 21.1 x 11.9 mm² / 24.2 mm HD
 21.1 x 15.8 mm² / 26.4 mm HD+
- shutter mode: global (snapshot)
- MTF: 45.5 lp/mm (theoretical)
- fullwell capacity: 36000 e-
- readout noise: 23 e- rms (typ.)
 18 e- rms (CDI, typ.)
- dynamic range: 1600 : 1 (64 dB)
 2000 : 1 (65 dB, CDI)
- quantum efficiency: 50 % @ peak
- spectral range: 290 nm .. 1100 nm
- dark current: 530 e-/pixel/s @ 20 °C
- DSNU: < 0.6 cnts. rms @ 90 % center zone
- PRNU: < 1 % @ 80 % signal

camera HD/HD+

- max. frame rate: 2128 fps HD
 1603 fps HD+
- exposure/shutter time: 1.5 µs .. 40 ms
- dynamic range A/D: 12 bit
- A/D conversion factor: 8.8 e-/count
- pixel scan rate: 55 MHz
- pixel data rate: 4413 Mpixel/s HD
 4432 Mpixel/s HD+
- region of interest: steps of 48 x 4 pixel (centered)
- non linearity: < 0.5 % (diff.) / < 0.2 (integr.)
- primary image memory (camRAM): 9 GB / 18 GB / 36 GB
- trigger input signals: frame trigger, sequence trigger,
 stop trigger
- trigger output signals: exposure, busy
- data interface: USB 3.0, GigE/USB 2.0, HD-SDI, CameraLink
- time stamp: in image (1 µs resolution)
- time code input: IRIG-B (optional)
- interframing time: 3.58 µs (optional)
- operational shock: 30 g @ 11 ms, half sine wave, all axes
- operational vibration: 25 g @ 1 - 150 Hz, all axes

general HD/HD+

- power supply: 90 .. 260 VAC (12 VDC opt.)
- power consumption: 80 W (120 W with battery)
- weight: 7.9 kg
- ambient temperature: + 5 °C .. + 40 °C
- operating humidity range: 10 % .. 90 % (non-condensing)
- storage temperature range: - 20 °C .. + 70 °C
- optical interface: F-mount (std.) / C-mount (opt.)
- CE / FCC certified: yes

frame rate table

<table>
<thead>
<tr>
<th>typical examples [pixel]</th>
<th>frame rate</th>
<th>images in memory (36 GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1920 x 1080</td>
<td>2128 fps</td>
<td>12 298</td>
</tr>
<tr>
<td>1296 x 720</td>
<td>4347 fps</td>
<td>27 327</td>
</tr>
<tr>
<td>1008 x 1000</td>
<td>3822 fps</td>
<td>25 297</td>
</tr>
<tr>
<td>480 x 240</td>
<td>23 061 fps</td>
<td>221 036</td>
</tr>
<tr>
<td>240 x 16</td>
<td>130 641 fps</td>
<td>6325 870</td>
</tr>
</tbody>
</table>

pco.dimax HD

- 1920 x 1440: 1603 fps 9223
- 1920 x 1080: 2128 fps 12298
- 1296 x 720: 4347 fps 27327
- 1008 x 1000: 3822 fps 25297
- 480 x 240: 23 061 fps 221 036
- 240 x 16: 130 641 fps 6325 870

quantum efficiency

1. In correlated double image mode (CDI) the readout noise is reduced and therefore the intrascene
dynamic is improved.
2. All trigger input signals are optically isolated and various signal conditions can be selected like: low
tlevel TTL, high level TTL, differential (RS-485) and passive (contact closure).
3. The given resolutions are selected for the frame rate calculations only, they are not mandatory. For region
of interest conditions see table above.
4. Time between two consecutive images for particle image velocimetry (PIV) applications
5. Includes charging current
technical data

software
For camera control, image acquisition and archiving of images in various file formats PCO provides the software application Camware (Windows XP, 7 and 8).

A camera SDK (software development kit) including a 32 / 64 bit dynamic link library for user customization and integration on PC platforms is available for free.

For a list of third party software supported, please visit www.pco.de

options
monochrome & color versions available; rechargeable battery packs; custom made versions

dimensions
F-mount lens changeable adapter.

camera views

Further information can be found on www.pco.de
The recording of high speed sequences of safety tests is a requirement by law for car manufacturers. But more and more these recordings are as well used for 3D measurements to improve the modelling.

Nature documentation and super slow motion are a recent combination, which attracts people to watch and get new insights into animal life. Here ducklings were observed with a pco.dimax HD+ by Blue Paw Artists in Guyana.

The documentation and subsequent motion analysis are also important tools to improve space technology. Here the last shuttle start was recorded with two pco. dimax cameras. Courtesy of NASA, Florida, USA.

The deflation of a side-airbag under demanding light conditions was precisely recorded with a pco.dimax.

A material test was recorded with two pco. dimax high speed cameras in a stereo configuration. The exact synchronisation was important for the application. Courtesy of GOM Optical Measuring Techniques, Braunschweig, Germany.

For news and sport information on TV it is always interesting to show fast events in slow motion. Here the controlled blasting of old Bayernoil smokestacks (Ingolstadt, Germany) was recorded by a pco.dimax.

Application areas:
- material testing
- airbag inflation
- high speed particle image velocimetry (PIV)
- tensile testing
- short time physics
- hydrodynamics
- spray analysis
- combustion analysis
- deformation
- machine vision
- industrial quality control
- hypervelocity impact studies
- fuel injection
- ballistics
- abrasive material research
- sparks in electronical switches
- research in ignition
- high speed photogrammetry

Europe
PCO AG
Donaupark 11
93309 Kelheim, Germany
+49 9441 2005 50
info@pco.de
pco.de

America
PCO-TECH Inc.
6930 Metroplex Drive
Romulus, Michigan 48174, USA
+1 248 276 8820
info@pco-tech.com
pco-tech.com

Asia
PCO Imaging Asia Pte.
3 Temasek Ave
Centennial Tower, Level 34
Singapore, 039190
+65 6549 7054
info@pco-imaging.com
pco-imaging.com

China
Suzhou PCO Imaging Technology Co., LTD
Suzhou (Jiangsu), P.R. China
+86 512 67634
info@pco.cn
pco.cn