Life Science

AptaSELECT Copy

Microarrays are versatile tools for high throughput screening. Nevertheless they are severely limited. Therefore the idea arose why not to copy microarrays? Why not make DNA, RNA and protein microarrays as high quality copies of a high quality original? It worked fine for text books and images. So why not apply it for DNA? Why not build a biomolecule copying machine? A biomolecule xeroxer?

Weiterlesen
Super-Resolution Microscopy

DNA origami is a powerful method for the programmable assembly of nanoscale molecular structures. For applications of these structures as functional biomaterials, the study of reaction kinetics and dynamic processes in real time and with high spatial resolution becomes increasingly important.

Weiterlesen
High-Speed Plane Microscopy

Oblique plane microscopy (OPM) is a form of light sheet microscopy that uses a single high numerical aperture microscope objective for both fluorescence excitation and collection.

Weiterlesen
Trypanosome Motion

The application shows that the mode and dynamics of trypanosome locomotion are a trait of life within a crowded environment. Using high-speed fluorescence microscopy and ordered micro-pillar arrays we show that the parasites mode of motility is adapted to the density of cells in blood.

Weiterlesen
Dissolving Surface Droplets

General knowledge tells us that oil and water do not mix. However, if we understand the mixing of oil and water, we better understand the behavior of spilled coffee, we can predict how long it will take for paint to dry, four our glass of beer to lose its 'fizz' and we can understand why the olive oil and vinegar in out 'vinaigrette' indeed refuses to mix.

Weiterlesen
PRIOR Proton Microscope

This work describes details to the principle, design and construction of the proton microscope as well as first measurements and simulations of essential components like magnetic lenses, a collimator and a scintillator screen.

Weiterlesen
Time-Lapse 3-D Measurements

Light sheet fluorescence microscopy has previously been demonstrated on a commercially available inverted fluorescence microscope frame using the method of oblique plane microscopy (OPM). In this paper, OPM is adapted to allow time-lapse 3-D imaging of 3-D biological cultures in commercially available glass-bottomed 96-well plates using a stage-scanning OPM approach (ssOPM).

Weiterlesen